Форма представления | Статьи в зарубежных журналах и сборниках |
Год публикации | 2023 |
|
Галимянов Анис Фуатович, автор
|
Библиографическое описание на языке оригинала |
Duc, N. T. Neural network method for solving fractional differential equations with the dirichlet problem / N. T. Duc, A. F. Galimyanov, I. Z. Akhmetov // 2023 International Russian Smart Industry Conference (SmartIndustryCon) / IEEE. - 2023. - Pp. 295-300, doi: 10.1109/SmartIndustryCon57312.2023.10110785. |
Аннотация |
2023 International Russian Smart Industry Conference (SmartIndustryCon) |
Ключевые слова |
fractional differential equations,Dirichlet?s problem, conformable fractional derivative, artificial neural network |
Название журнала |
2023 International Russian Smart Industry Conference (SmartIndustryCon)
|
Издательство |
IEEE |
URL |
https://ieeexplore.ieee.org/abstract/document/10110785/keywords#keywords |
Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на эту карточку |
https://repository.kpfu.ru/?p_id=280824 |
Полная запись метаданных |
Поле DC |
Значение |
Язык |
dc.contributor.author |
Галимянов Анис Фуатович |
ru_RU |
dc.date.accessioned |
2023-01-01T00:00:00Z |
ru_RU |
dc.date.available |
2023-01-01T00:00:00Z |
ru_RU |
dc.date.issued |
2023 |
ru_RU |
dc.identifier.citation |
Duc, N. T. Neural network method for solving fractional differential equations with the dirichlet problem / N. T. Duc, A. F. Galimyanov, I. Z. Akhmetov // 2023 International Russian Smart Industry Conference (SmartIndustryCon) / IEEE. - 2023. - Pp. 295-300, doi: 10.1109/SmartIndustryCon57312.2023.10110785. |
ru_RU |
dc.identifier.uri |
https://repository.kpfu.ru/?p_id=280824 |
ru_RU |
dc.description.abstract |
2023 International Russian Smart Industry Conference (SmartIndustryCon) |
ru_RU |
dc.description.abstract |
In this paper, we have developed an artificial neural network (ANN) method for finding solutions to the Dirichlet problem for fractional order differential equations (FODEs) 0 <α<1 using the definition of a conformable fractional derivative. Here, we used a feedforward neural architecture, L-BFGS (Broyden ? Fletcher ? Goldfarb - Shanno) optimization method to minimize the error function and change the parameters (weights and biases). The main idea is that if the sum of the norms of the residuals of the equation on the domain of definition and the boundary conditions tends to zero when the unknown function y(x) is replaced by its neural network approximation N(x), then N(x) is an approximate solution of the differential equation. Some illustrative examples are given demonstrating the accuracy and efficiency of this method and comparing the results of the current method with mathematical results. |
ru_RU |
dc.language.iso |
ru |
ru_RU |
dc.publisher |
IEEE |
ru_RU |
dc.subject |
fractional differential equations |
ru_RU |
dc.subject |
Dirichlet?s problem |
ru_RU |
dc.subject |
conformable fractional derivative |
ru_RU |
dc.subject |
artificial neural network |
ru_RU |
dc.title |
Neural network method for solving fractional differential equations \alpha with the dirichlet problem |
ru_RU |
dc.type |
Статьи в зарубежных журналах и сборниках |
ru_RU |
|