Казанский (Приволжский) федеральный университет, КФУ
КАЗАНСКИЙ
ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ
 
INVERSE QSAR: REVERSING DES­CRIPTOR-DRIVEN PREDICTION PIPELINE USING ATTENTION-BASED CONDITIONAL VARIATIONAL AUTOENCODER
Форма представленияСтатьи в зарубежных журналах и сборниках
Год публикации2022
Языканглийский
  • Маджидов Тимур Исмаилович, автор
  • Библиографическое описание на языке оригинала Bort W. Inverse QSAR: Reversing Descriptor-Driven Prediction Pipeline Using Attention-Based Conditional Variational Autoencoder / Bort W., Mazitov D., Horvath D., Bonachera F., Lin A., Marcou G., Baskin I., Madzhidov T., Varnek A. // Journal of Chemical Information and Modeling. - 2022.
    Аннотация In order to better foramize it, the notorious inverse-QSAR problem (finding structures of given QSAR-predicted properties) is considered in this paper as a two-step process including (i) finding “seed” descriptor vectors corresponding to user-constrained QSAR model output values and (ii) identifying the chemical structures best matching the “seed” vectors. The main development effort here was focused on the latter stage, proposing a new attention-based conditional variational autoencoder neural-network architecture based on recent developments in attention-based methods. The obtained results show that this workflow was capable of generating compounds predicted to display desired activity while being completely novel compared to the training database (ChEMBL). Moreover, the generated compounds show acceptable druglikeness and synthetic accessibility. Both pharmacophore and docking studies were carried out as “orthogonal” in silico validation methods, proving that some of de novo structures are, beyond being predicted active by 2D-QSAR models, clearly able to match binding 3D pharmacophores and bind the protein pocket.
    Ключевые слова Bioinformatics and computational biology,Molecular modeling,Molecules,Pharmacophores,Structure activity relationship
    Название журнала Journal of Chemical Information and Modeling
    URL https://pubs.acs.org/doi/abs/10.1021/acs.jcim.2c01086
    Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на эту карточку https://repository.kpfu.ru/?p_id=281118

    Полная запись метаданных