Казанский (Приволжский) федеральный университет, КФУ
КАЗАНСКИЙ
ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ
 
QUANTUM BOUNDS FOR 2D-GRID AND DYCK LANGUAGE
Форма представленияСтатьи в зарубежных журналах и сборниках
Год публикации2023
Языканглийский
  • Хадиев Камиль Равилевич, автор
  • Библиографическое описание на языке оригинала Ambainis, A., Balodis, K., Iraids, J., Khadiev, K., Kļevickis, V., Prūsis, K., Shen, Y., Smotrovs, J. and Vihrovs, J., Quantum bounds for 2D-grid and Dyck language//Quantum Information Processing. - 2023. - Vol.22, Is.5. - Art. №194.
    Аннотация We study the quantum query complexity of two problems. First, we consider the problem of determining whether a sequence of parentheses is a properly balanced one (a Dyck word), with a depth of at most k. We call this the DYCKk,n problem. We prove a lower bound of Ω(ckn) , showing that the complexity of this problem increases exponentially in k. Here n is the length of the word. When k is a constant, this is interesting as a representative example of star-free languages for which a surprising O~(n) query quantum algorithm was recently constructed by Aaronson et al. (Electron Colloquium Comput Complex (ECCC) 26:61, 2018). Their proof does not give rise to a general algorithm. When k is not a constant, DYCKk,n is not context-free. We give an algorithm with O(n(logn)0.5k) quantum queries for DYCKk,n for all k. This is better than the trivial upper bound n for k=o(log(n)loglogn) . Second, we consider connectivity problems on grid graphs in 2 dimensions, if some of the edges of the grid may be missing. By embedding the “balanced parentheses” problem into the grid, we show a lower bound of Ω (n1.5-ϵ) for the directed 2D grid and Ω (n2-ϵ) for the undirected 2D grid. We present two algorithms for particular cases of the problem. The directed problem is interesting as a black-box model for a class of classical dynamic programming strategies including the one that is usually used for the well-known edit distance problem. We also show a generalization of this result to more than 2 dimensions.
    Ключевые слова quantum computing, dyck language, string processing
    Название журнала Quantum Information Processing
    URL https://www.scopus.com/inward/record.uri?eid=2-s2.0-85156269884&doi=10.1007%2fs11128-023-03910-9&partnerID=40&md5=a87d333eaf95368118123b062cb9ce97
    Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на эту карточку https://repository.kpfu.ru/?p_id=281537

    Полная запись метаданных