Казанский (Приволжский) федеральный университет, КФУ
КАЗАНСКИЙ
ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ
 
MULTI-CLASS SEGMENTATION OF HETEROGENEOUS AREAS IN BIOMEDICAL AND ENVIRONMENTAL IMAGES BASED ON THE ASSESSMENT OF LOCAL EDGE DENSITY
Форма представленияСтатьи в зарубежных журналах и сборниках
Год публикации2023
Языканглийский
  • Богачев Михаил Игоревич, автор
  • Гафуров Артур Маратович, автор
  • Зеленихин Павел Валерьевич, автор
  • Каюмов Айрат Рашитович, автор
  • Тишин Денис Владимирович, автор
  • Усманов Булат Мансурович, автор
  • Богачев Михаил Игоревич, автор
  • Каплун Дмитрий Ильич, автор
  • Лыянова Асия , автор
  • Синица Александр Михайлович, автор
  • Имаев Расуль Габдрафикович, автор
  • Библиографическое описание на языке оригинала Sinitca A.M. Multi-class segmentation of heterogeneous areas in biomedical and environmental images based on the assessment of local edge density / A.M. Sinitca, A.I. Lyanova, D.I. Kaplun, P.V. Zelenikhin, R.G. Imaev, A.M. Gafurov, B.M. Usmanov, D.V. Tishin, A.R. Kayumov, M.I. Bogachev // International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives. - 2023. - Vol.48, Is.2/W3-2023. - P.233-238.
    Аннотация Imaging techniques employed in biomedical and ecological applications typically require complex equipment and experimental approaches, including sophisticated multispectral cameras, as well as physical markup of samples, altogether limiting their broad availability. Accordingly, computerized methods allowing to obtain similar information from images obtained in visible light spectrum with reasonable accuracy are of considerable interest. Edge detection methods are commonly used to find discriminating curves in image segmentation. Here we follow an alternative route and employ edge detection results as a separate metric characterizing local structural properties of the image. In turn, their characteristics such as density or orientation averaged in a gliding window are used as a virtual channel substituting multispectral imaging and/or physical markup of samples, and the following image segmentation procedures are performed by thresholding. In complex segmentation scenarios, a single fixed threshold often appears sufficient, and thus relevant adaptive multi-threshold algorithms are of interest, with slope difference distribution (SDD) thresholding algorithm representing a prominent example.
    Ключевые слова multispectral images, remote sensing, segmentation, patchiness, edge density
    Название журнала International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives
    URL https://isprs-archives.copernicus.org/articles/XLVIII-2-W3-2023/233/2023/
    Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на эту карточку https://repository.kpfu.ru/?p_id=286443
    Файлы ресурса 
    Название файла Размер (Мб) Формат  
    F_isprs_archives_XLVIII_2_W3_2023_233_2023.pdf 3,62 pdf посмотреть / скачать

    Полная запись метаданных