Казанский (Приволжский) федеральный университет, КФУ
КАЗАНСКИЙ
ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ
 
ANALYSIS OF INTERPERSONAL RELATIONSHIPS OF SOCIAL NETWORK USERS USING EXPLAINABLE ARTIFICIAL INTELLIGENCE METHODS
Форма представленияСтатьи в зарубежных журналах и сборниках
Год публикации2023
Языканглийский
  • Бердников Андрей Анатольевич, автор
  • Гафаров Фаиль Мубаракович, автор
  • Устин Павел Николаевич, автор
  • Библиографическое описание на языке оригинала Ustin P, Gafarov F, Berdnikov A. Analysis of Interpersonal Relationships of Social Network Users Using Explainable Artificial Intelligence Methods. OBM Neurobiology 2023; 7(3): 180
    Аннотация The emergence of the social networking phenomenon and the sudden spread of the coronavirus pandemic (COVID-19) around the world have significantly affected the transformation of the system of interpersonal relations, partly shifting them towards virtual reality. Online social networks have greatly expanded the boundaries of human interpersonal interaction and initiated processes of integration of different cultures. As a result, research into the possibilities of predicting human behavior through the characteristics of virtual communication in social networks has become more relevant. The aim of the study is: to explore the possibilities of machine learning model interpretability methods for interpreting the success of social network users based on their profile data. This paper uses a specific method of explainable artificial intelligence, SHAP (SHapley Additive exPlanations), to analyze and interpret trained machine learning models. The research is based on Social Network Analysis (SNA), a modern line of research conducted to understand different aspects of the social network as a whole as well as its individual nodes (users). User accounts on social networks provide detailed information that characterizes a user's personality, interests, and hobbies and reflects their current status. Characteristics of a personal profile also make it possible to identify social graphs - mathematical models reflecting the characteristics of interpersonal relationships of social network users. An important tool for social network analysis is various machine learning algorithms that make different predictions based on sets of characteristics (social network data). However, most of today's powerful machine learning methods are «black boxes,« and therefore the challenge of interpreting and explaining their results arises. The study trained RandomForestClassifier and XGBClassifier models and showed the nature and degree of influence of the personal profile metrics of VKontakte social network users and indicators of their interpersonal relationship characteristics (graph metrics).
    Ключевые слова Interpersonal relations; social networks; success; predictors; explainable artificial intelligence; machine learning; Shapley values
    Название журнала OBM Neurobiology
    Ссылка для РПД http://dspace.kpfu.ru/xmlui/bitstream/handle/net/177566/obm.neurobiol.2303180.pdf?sequence=1&isAllowed=y
    Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на эту карточку https://repository.kpfu.ru/?p_id=292451
    Файлы ресурса 
    Название файла Размер (Мб) Формат  
    obm.neurobiol.2303180.pdf 0,52 pdf посмотреть / скачать

    Полная запись метаданных