Форма представления | Статьи в зарубежных журналах и сборниках |
Год публикации | 2024 |
Язык | английский |
|
Авхадиев Фарит Габидинович, автор
|
Библиографическое описание на языке оригинала |
Avkhadiev F.G. Estimates of generalized St. Venant functionals/ // Lobachevskii J. Math. 2024, vol/ 45, No. 6, p. 2810--2820. |
Аннотация |
In this paper we consider parametric generalizations of a St. Venant type functional, defined on domains of the Euclidean space of dimension $n\geq 2$ and connected with the torsional
rigidity of a domain as well as with integrals of powers of the St. Venant stress function over simply connected plane domains. We give several estimates for the generalized functionals.
In particular, for bounded convex domains we obtain an essential improvement of two known results proved by R.~Ba\~{n}uelos, M.~van~den~Berg, and T.~Carrol (see J. London Math. Soc., 66 (2), 499--512, 2002) and by R.~G.~Salahudinov (see Russian Math. (Iz. VUZ), 50:3, 39–46, 2006). In addition, we examine these functionals over non convex domains in two cases when a domain has uniformly perfect boundary or it is close to convex domains in a certain sense. For such a domain we prove several new estimates using power boundary moments of domains. |
Ключевые слова |
St Venant a functional, torsional rigidity |
Название журнала |
Lobashevskii Journal of Mathematics
|
Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на эту карточку |
https://repository.kpfu.ru/?p_id=305149 |
Полная запись метаданных |
Поле DC |
Значение |
Язык |
dc.contributor.author |
Авхадиев Фарит Габидинович |
ru_RU |
dc.date.accessioned |
2024-01-01T00:00:00Z |
ru_RU |
dc.date.available |
2024-01-01T00:00:00Z |
ru_RU |
dc.date.issued |
2024 |
ru_RU |
dc.identifier.citation |
Avkhadiev F.G. Estimates of generalized St. Venant functionals/ // Lobachevskii J. Math. 2024, vol/ 45, No. 6, p. 2810--2820. |
ru_RU |
dc.identifier.uri |
https://repository.kpfu.ru/?p_id=305149 |
ru_RU |
dc.description.abstract |
Lobashevskii Journal of Mathematics |
ru_RU |
dc.description.abstract |
In this paper we consider parametric generalizations of a St. Venant type functional, defined on domains of the Euclidean space of dimension $n\geq 2$ and connected with the torsional
rigidity of a domain as well as with integrals of powers of the St. Venant stress function over simply connected plane domains. We give several estimates for the generalized functionals.
In particular, for bounded convex domains we obtain an essential improvement of two known results proved by R.~Ba\~{n}uelos, M.~van~den~Berg, and T.~Carrol (see J. London Math. Soc., 66 (2), 499--512, 2002) and by R.~G.~Salahudinov (see Russian Math. (Iz. VUZ), 50:3, 39–46, 2006). In addition, we examine these functionals over non convex domains in two cases when a domain has uniformly perfect boundary or it is close to convex domains in a certain sense. For such a domain we prove several new estimates using power boundary moments of domains. |
ru_RU |
dc.language.iso |
ru |
ru_RU |
dc.subject |
St Venant a functional |
ru_RU |
dc.subject |
torsional rigidity |
ru_RU |
dc.title |
Estimates of generalized St. Venant functionals |
ru_RU |
dc.type |
Статьи в зарубежных журналах и сборниках |
ru_RU |
|