Казанский (Приволжский) федеральный университет, КФУ
КАЗАНСКИЙ
ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ
 
ASSESSMENT OF A SEMI-SUPERVISED MACHINE LEARNING METHOD FOR THWARTING NETWORK DDOS ASSAULTS
Форма представленияСтатьи в зарубежных журналах и сборниках
Год публикации2024
Языканглийский
  • Ахметшин Эльвир Мунирович, автор
  • Библиографическое описание на языке оригинала Lakshmi S.G, Durga T.N.V, Srilatha P, Assessment of a Semi-supervised Machine Learning Method for Thwarting Network DDoS Assaults//Lecture Notes in Electrical Engineering. - 2024. - Vol.1155, Is.. - P.307-318.
    Аннотация In latest existence, Path identifiers (PID) have utilised as inter-domain routing (IDR) things in association. Though, the PIDs utilised in present methods are immobile that creates it simple for attacker to introduce D DoS flooding attacks. To discourse this problem, current a D-PID structure, which make use of PIDs negotiated among neighbouring domains as IDR substance. The PID of the inter-domain connection between two domains in DPID is going to be kept private and can vary periodically. Cryptographic techniques may be employed as well to safeguard the security of information shared over a network. There is a good possibility that DPID's data-secure technique will stop networking D DoS assaults.
    Ключевые слова Machine Learning
    Название журнала Lecture Notes in Electrical Engineering
    URL https://www.scopus.com/inward/record.uri?eid=2-s2.0-85192388027&doi=10.1007%2f978-981-97-0644-0_28&partnerID=40&md5=0e4b5b93e008df3a2d52ef636468ffea
    Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на эту карточку https://repository.kpfu.ru/?p_id=307430

    Полная запись метаданных