Форма представления | Статьи в зарубежных журналах и сборниках |
Год публикации | 2025 |
Язык | английский |
|
Обносов Юрий Викторович, автор
|
|
Kacimov Anvar Rashidovich, автор
|
Библиографическое описание на языке оригинала |
Kacimov A.R., Obnosov Yu.V. Mixed Boundary-Value Problem in Microfluidics: Aver'yanov-Blunt Model Revisited. ANZIAM J., v.67, e16 (2025) pp.1-14 (Cambridge University Press) (IF 0.9, Q3) |
Аннотация |
Macroscopically, a Darcian unsaturated moisture flow in the top soil is usually represented by an one -dimensional volume scale of evaporation from a static water table. On the microscale, simple pore-level models posit bundles of small-radius capillary tubes of a constant circular cross-section, fully occupied by a mobile water moving in the Hagen-Poiseuille (HP) regime, while large diameter pores are occupied by a stagnant air. In our paper, cross-sections of cylindrical pores are polygonal. Steady, laminar, fully-developed 2-D flows of a Newtonian water in prismatic conduits, driven by a constant pressure gradient along poresgradient, are more complex than the HP formula is based on, viz. the pores are only partially occupied by water and immobile air. The Poisson equation in a circular tetragon, with a no-slip or mixed (no-shear stress) boundary conditions on the two adjacent pore walls and two menisci, is solved by the methods of complex analysis. The velocity distribution obtained via the Keldysh-Sedov type of singular integrals and the flow rate is evaluated for several sets of menisci radii by integration of the velocity over the corresponding tetragons. |
Ключевые слова |
Mixed boundary value problem for holomorphic function; 2D Poisson equation; longitudinal pore-scale velocity; evapotranspiration from ``solonchak's'' shallow water table |
Название журнала |
ANZIAM Journal
|
URL |
https://doi.org/doi:10.1017/S1446181124000051 |
Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на эту карточку |
https://repository.kpfu.ru/?p_id=312417 |
Полная запись метаданных  |
Поле DC |
Значение |
Язык |
dc.contributor.author |
Обносов Юрий Викторович |
ru_RU |
dc.contributor.author |
Kacimov Anvar Rashidovich |
ru_RU |
dc.date.accessioned |
2025-01-01T00:00:00Z |
ru_RU |
dc.date.available |
2025-01-01T00:00:00Z |
ru_RU |
dc.date.issued |
2025 |
ru_RU |
dc.identifier.citation |
Kacimov A.R., Obnosov Yu.V. Mixed Boundary-Value Problem in Microfluidics: Aver'yanov-Blunt Model Revisited. ANZIAM J., v.67, e16 (2025) pp.1-14 (Cambridge University Press) (IF 0.9, Q3) |
ru_RU |
dc.identifier.uri |
https://repository.kpfu.ru/?p_id=312417 |
ru_RU |
dc.description.abstract |
ANZIAM Journal |
ru_RU |
dc.description.abstract |
Macroscopically, a Darcian unsaturated moisture flow in the top soil is usually represented by an one -dimensional volume scale of evaporation from a static water table. On the microscale, simple pore-level models posit bundles of small-radius capillary tubes of a constant circular cross-section, fully occupied by a mobile water moving in the Hagen-Poiseuille (HP) regime, while large diameter pores are occupied by a stagnant air. In our paper, cross-sections of cylindrical pores are polygonal. Steady, laminar, fully-developed 2-D flows of a Newtonian water in prismatic conduits, driven by a constant pressure gradient along poresgradient, are more complex than the HP formula is based on, viz. the pores are only partially occupied by water and immobile air. The Poisson equation in a circular tetragon, with a no-slip or mixed (no-shear stress) boundary conditions on the two adjacent pore walls and two menisci, is solved by the methods of complex analysis. The velocity distribution obtained via the Keldysh-Sedov type of singular integrals and the flow rate is evaluated for several sets of menisci radii by integration of the velocity over the corresponding tetragons. |
ru_RU |
dc.language.iso |
ru |
ru_RU |
dc.subject |
|
ru_RU |
dc.title |
Mixed Boundary-Value Problem in Microfluidics: Aver'yanov-Blunt Model Revisited. |
ru_RU |
dc.type |
Статьи в зарубежных журналах и сборниках |
ru_RU |
|