| Форма представления | Статьи в зарубежных журналах и сборниках |
| Год публикации | 2025 |
| Язык | английский |
|
Насибуллин Рамиль Гайсаевич, автор
|
| Библиографическое описание на языке оригинала |
Nasibullin R.G., Avkhadiev?Wirths conjecture on best Brezis?Marcus constants//Sbornik Mathematics. - 2025. - Vol.216, Is.4. - P.538-559. |
| Аннотация |
We study Hardy-type inequalities with additional terms. The constant
λ(Ω) multiplying the additional term depends on the geometry of the multidimensional domain Ω and the numerical parameters of the problem. This constant (functional) is commonly called the Brezis–Marcus constant. Avkhadiev and Wirths [1] put forward the conjecture that, over all n-dimensional domains with fixed inner radius δ0, the maximum best Brezis–Marcus constant is λ(Bn), where Bn is the n-ball of radius δ0. We improve the previously available lower estimates for λ(Bn) , for n = 2 and n=4,…,10, which takes us closer to this conjecture. |
| Ключевые слова |
Hardy inequality, inner radius, distance function, Bessel function, additional term. |
| Название журнала |
Sbornik Mathematics
|
| URL |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-105011314350&doi=10.4213%2fsm10120e&partnerID=40&md5=2ad74bf26edbcf43f2f58616c4272395 |
| Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на эту карточку |
https://repository.kpfu.ru/?p_id=316212 |
Полная запись метаданных  |
| Поле DC |
Значение |
Язык |
| dc.contributor.author |
Насибуллин Рамиль Гайсаевич |
ru_RU |
| dc.date.accessioned |
2025-01-01T00:00:00Z |
ru_RU |
| dc.date.available |
2025-01-01T00:00:00Z |
ru_RU |
| dc.date.issued |
2025 |
ru_RU |
| dc.identifier.citation |
Nasibullin R.G., Avkhadiev?Wirths conjecture on best Brezis?Marcus constants//Sbornik Mathematics. - 2025. - Vol.216, Is.4. - P.538-559. |
ru_RU |
| dc.identifier.uri |
https://repository.kpfu.ru/?p_id=316212 |
ru_RU |
| dc.description.abstract |
Sbornik Mathematics |
ru_RU |
| dc.description.abstract |
We study Hardy-type inequalities with additional terms. The constant
λ(Ω) multiplying the additional term depends on the geometry of the multidimensional domain Ω and the numerical parameters of the problem. This constant (functional) is commonly called the Brezis–Marcus constant. Avkhadiev and Wirths [1] put forward the conjecture that, over all n-dimensional domains with fixed inner radius δ0, the maximum best Brezis–Marcus constant is λ(Bn), where Bn is the n-ball of radius δ0. We improve the previously available lower estimates for λ(Bn) , for n = 2 and n=4,…,10, which takes us closer to this conjecture. |
ru_RU |
| dc.language.iso |
ru |
ru_RU |
| dc.subject |
Hardy inequality |
ru_RU |
| dc.subject |
inner radius |
ru_RU |
| dc.subject |
distance function |
ru_RU |
| dc.subject |
Bessel function |
ru_RU |
| dc.subject |
additional term. |
ru_RU |
| dc.title |
Avkhadiev?Wirths conjecture on best Brezis?Marcus constants |
ru_RU |
| dc.type |
Статьи в зарубежных журналах и сборниках |
ru_RU |
|