| Форма представления | Тезисы и материалы конференций в зарубежных журналах и сборниках |
| Год публикации | 2024 |
| Язык | английский |
|
Егорчев Антон Александрович, автор
Тумаков Дмитрий Николаевич, автор
|
| Библиографическое описание на языке оригинала |
Tuliabaeva, D. Recognition of Slightly Blurred Images of Planets by a Convolutional Neural Network / D. Tuliabaeva, D. Tumakov, A. Egorchev // III International Scientific and Practical Conference Technologies, Materials Science and Engineering (EEA-III-2024) : AIP Conference Proceedings, Dushanbe. Vol. 3243. – Melville: AIP PUBLISHING, 2024. – P. 20087. – DOI 10.1063/5.0247350 |
| Аннотация |
AIP Conference Proceedings. Том 3243. Melville, 2024 |
| Ключевые слова |
Image classification, Convolutional Neural Network |
| Название журнала |
AIP Conference Proceedings. Том 3243. Melville, 2024
|
| Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на эту карточку |
https://repository.kpfu.ru/?p_id=317401 |
Полная запись метаданных  |
| Поле DC |
Значение |
Язык |
| dc.contributor.author |
Егорчев Антон Александрович |
ru_RU |
| dc.contributor.author |
Тумаков Дмитрий Николаевич |
ru_RU |
| dc.date.accessioned |
2024-01-01T00:00:00Z |
ru_RU |
| dc.date.available |
2024-01-01T00:00:00Z |
ru_RU |
| dc.date.issued |
2024 |
ru_RU |
| dc.identifier.citation |
Tuliabaeva, D. Recognition of Slightly Blurred Images of Planets by a Convolutional Neural Network / D. Tuliabaeva, D. Tumakov, A. Egorchev // III International Scientific and Practical Conference Technologies, Materials Science and Engineering (EEA-III-2024) : AIP Conference Proceedings, Dushanbe. Vol. 3243. – Melville: AIP PUBLISHING, 2024. – P. 20087. – DOI 10.1063/5.0247350 |
ru_RU |
| dc.identifier.uri |
https://repository.kpfu.ru/?p_id=317401 |
ru_RU |
| dc.description.abstract |
AIP Conference Proceedings. Том 3243. Melville, 2024 |
ru_RU |
| dc.description.abstract |
The influence of the degree of blur on accuracy of recognition of celestial bodies images is studied. For this purpose, color photographs of nine celestial objects of the Solar System are used including eight confirmed planets, two dwarf planets and the Earth's satellite - the Moon. The training and test datasets are represented by images of celestial bodies against a black background measuring 256 by 144 pixels. The analysis is carried out on color and corresponding black-and-white images. It is found that by increasing the filter size and adding additional convolutional layers to the neural network, recognition accuracy increases. The study confirms that the accuracy of celestial body recognition is highly dependent on even the degree of blur (3x3 matrix), decreasing from 99% to 79% for color images and from 97.5% to 40% for grayscale images. It is shown that a dataset enlarged by adding images obtained through rotations by 45, 90, 180 and 270 degrees leads to a significant (by about 20%) increase in the accuracy of the model for blurred images. Histograms are presented demonstrating recognition accuracy depending on the degree of blur. |
ru_RU |
| dc.language.iso |
ru |
ru_RU |
| dc.subject |
Image classification |
ru_RU |
| dc.subject |
Convolutional Neural Network |
ru_RU |
| dc.title |
Recognition of Slightly Blurred Images of Planets by a Convolutional Neural Network |
ru_RU |
| dc.type |
Тезисы и материалы конференций в зарубежных журналах и сборниках |
ru_RU |
|