| Форма представления | Статьи в зарубежных журналах и сборниках |
| Год публикации | 2025 |
| Язык | английский |
|
Конюхов Владимир Михайлович, автор
|
| Библиографическое описание на языке оригинала |
Konyukhov I.V., Konyukhov V.M., Kurdyukov A.V., Analysis of the Physics-Informed Neural Network Approach to Solving Diffusion Equation//Lobachevskii Journal of Mathematics. - 2025. - Vol.46, Is.4. - P.1860-1870. |
| Аннотация |
The application of physics-informed neural networks for solving the differential equation of parabolic type is considered. The influence of the neural network structure, optimization algorithms, software and processors' types on the learning process and accuracy of the solution of the two-dimensional diffusion problem is investigated using computational
experiments. The accuracy of the neural network solution is evaluated on the basis of comparison with the numerical solution. Based on the analysis of the results of multivariate calculations, it is shown that if the initial condition is included into the loss function expression, the accuracy of the solution increases significantly. |
| Ключевые слова |
machine learning, physics-informed neural networks, partial differential
equations, diffusion equation, numerical methods |
| Название журнала |
Lobachevskii Journal of Mathematics
|
| URL |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-105013865670&doi=10.1134%2FS1995080225605788&partnerID=40&md5=bd11f141acdaa0a75be7173d37e1d5fb |
| Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на эту карточку |
https://repository.kpfu.ru/?p_id=317483 |
Полная запись метаданных  |
| Поле DC |
Значение |
Язык |
| dc.contributor.author |
Конюхов Владимир Михайлович |
ru_RU |
| dc.date.accessioned |
2025-01-01T00:00:00Z |
ru_RU |
| dc.date.available |
2025-01-01T00:00:00Z |
ru_RU |
| dc.date.issued |
2025 |
ru_RU |
| dc.identifier.citation |
Konyukhov I.V., Konyukhov V.M., Kurdyukov A.V., Analysis of the Physics-Informed Neural Network Approach to Solving Diffusion Equation//Lobachevskii Journal of Mathematics. - 2025. - Vol.46, Is.4. - P.1860-1870. |
ru_RU |
| dc.identifier.uri |
https://repository.kpfu.ru/?p_id=317483 |
ru_RU |
| dc.description.abstract |
Lobachevskii Journal of Mathematics |
ru_RU |
| dc.description.abstract |
The application of physics-informed neural networks for solving the differential equation of parabolic type is considered. The influence of the neural network structure, optimization algorithms, software and processors' types on the learning process and accuracy of the solution of the two-dimensional diffusion problem is investigated using computational
experiments. The accuracy of the neural network solution is evaluated on the basis of comparison with the numerical solution. Based on the analysis of the results of multivariate calculations, it is shown that if the initial condition is included into the loss function expression, the accuracy of the solution increases significantly. |
ru_RU |
| dc.language.iso |
ru |
ru_RU |
| dc.subject |
machine learning |
ru_RU |
| dc.subject |
physics-informed neural networks |
ru_RU |
| dc.subject |
partial differential
equations |
ru_RU |
| dc.subject |
diffusion equation |
ru_RU |
| dc.subject |
numerical methods |
ru_RU |
| dc.title |
Analysis of the Physics-Informed Neural Network Approach to Solving Diffusion Equation |
ru_RU |
| dc.type |
Статьи в зарубежных журналах и сборниках |
ru_RU |
|