Казанский (Приволжский) федеральный университет, КФУ
КАЗАНСКИЙ
ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ
 
ANALYSIS OF THE PHYSICS-INFORMED NEURAL NETWORK APPROACH TO SOLVING DIFFUSION EQUATION
Форма представленияСтатьи в зарубежных журналах и сборниках
Год публикации2025
Языканглийский
  • Конюхов Владимир Михайлович, автор
  • Библиографическое описание на языке оригинала Konyukhov I.V., Konyukhov V.M., Kurdyukov A.V., Analysis of the Physics-Informed Neural Network Approach to Solving Diffusion Equation//Lobachevskii Journal of Mathematics. - 2025. - Vol.46, Is.4. - P.1860-1870.
    Аннотация The application of physics-informed neural networks for solving the differential equation of parabolic type is considered. The influence of the neural network structure, optimization algorithms, software and processors' types on the learning process and accuracy of the solution of the two-dimensional diffusion problem is investigated using computational experiments. The accuracy of the neural network solution is evaluated on the basis of comparison with the numerical solution. Based on the analysis of the results of multivariate calculations, it is shown that if the initial condition is included into the loss function expression, the accuracy of the solution increases significantly.
    Ключевые слова machine learning, physics-informed neural networks, partial differential equations, diffusion equation, numerical methods
    Название журнала Lobachevskii Journal of Mathematics
    URL https://www.scopus.com/inward/record.uri?eid=2-s2.0-105013865670&doi=10.1134%2FS1995080225605788&partnerID=40&md5=bd11f141acdaa0a75be7173d37e1d5fb
    Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на эту карточку https://repository.kpfu.ru/?p_id=317483

    Полная запись метаданных