Форма представления | Статьи в зарубежных журналах и сборниках |
Год публикации | 2012 |
Язык | английский |
|
Обносов Юрий Викторович, автор
|
Библиографическое описание на языке оригинала |
Obnosov Yu.V., Fadeev A.V. A generalized Miln-Thomson theorem for the case of elliptical inclusion. Euro Jnl of Applied Mathematics:23 (4) , pp. 469-484 Doi:10.1017/S0956792512000058 |
Аннотация |
An ${\mathbb R}$-linear conjugation problem modelling the process
of power fields forming in a heterogeneous infinite planar structure
with an elliptical inclusion is considered. Exact analytical
solutions are derived in the class of piece-wise meromorphic
functions with their principal parts fixed. Cases with internal
singularities and with singularities of the given principal parts at
the interface are investigated. |
Ключевые слова |
heterogeneous medium, elliptic inclusion,
R-linear conjugation problem, analytic functions |
Название журнала |
EUR J APPL MATH
|
URL |
http://Doi:10.1017/S0956792512000058 |
Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на эту карточку |
https://repository.kpfu.ru/?p_id=33488 |
Файлы ресурса | |
|
Полная запись метаданных |
Поле DC |
Значение |
Язык |
dc.contributor.author |
Обносов Юрий Викторович |
ru_RU |
dc.date.accessioned |
2012-01-01T00:00:00Z |
ru_RU |
dc.date.available |
2012-01-01T00:00:00Z |
ru_RU |
dc.date.issued |
2012 |
ru_RU |
dc.identifier.citation |
Obnosov Yu.V., Fadeev A.V. A generalized Miln-Thomson theorem for the case of elliptical inclusion. Euro Jnl of Applied Mathematics:23 (4) , pp. 469-484 Doi:10.1017/S0956792512000058 |
ru_RU |
dc.identifier.uri |
https://repository.kpfu.ru/?p_id=33488 |
ru_RU |
dc.description.abstract |
EUR J APPL MATH |
ru_RU |
dc.description.abstract |
An ${\mathbb R}$-linear conjugation problem modelling the process
of power fields forming in a heterogeneous infinite planar structure
with an elliptical inclusion is considered. Exact analytical
solutions are derived in the class of piece-wise meromorphic
functions with their principal parts fixed. Cases with internal
singularities and with singularities of the given principal parts at
the interface are investigated. |
ru_RU |
dc.language.iso |
ru |
ru_RU |
dc.subject |
heterogeneous medium |
ru_RU |
dc.subject |
elliptic inclusion |
ru_RU |
dc.subject |
R-linear conjugation problem |
ru_RU |
dc.subject |
analytic functions |
ru_RU |
dc.title |
A generalized Miln-Thomson theorem for the case of elliptical inclusion |
ru_RU |
dc.type |
Статьи в зарубежных журналах и сборниках |
ru_RU |
|