Форма представления | Статьи в зарубежных журналах и сборниках |
Год публикации | 2012 |
Язык | английский |
|
Обносов Юрий Викторович, автор
|
Библиографическое описание на языке оригинала |
Kacimov A.R., Obnosov Yu.V. Accumulation of a light nonaqueous phase liquid on a flat barrier baffling a descending groundwater flow. Proc. Royal Society London, A, 2012,468(2147), pp.3667-3684, DOI:10.1098/rspa.2012.0317 |
Аннотация |
The pioneering Zhukovskii (1891) solution for a steady 2D flow of an ideal heavy fluid with a nonlinear free boundary condition is extended to a Darcian flow of groundwater encumbered by an impermeable barrier. The stoss or/and lee sides of the barrier are covered by a macrovolume of a liquid contaminant. Explicit parametric equations of the sharp interface are obtained by inversion of the hodograph domain. Zhukovskii?s gas-finger shape is shown to be a particular case of our new class of free surfaces. For a cap of a light liquid, partially covering the roof, from the given cross-sectional area of the cap the affixes of the conformal mapping are found as a solution of a system of two nonlinear equations. The horizontal width and vertical height of the cap are determined. If the dimensionless incident velocity is higher than the density contrast then the interface (cap boundary) cusps at its apex. For a relatively small velocity the interface spreads to the vertexes of the barrier, t |
Ключевые слова |
Analytic functions, free boundary problems,
Lapalce's equation, seepage, refraction, hydraulic gradient,
suffosion |
Название журнала |
P ROY SOC A-MATH PHY
|
URL |
http://DOI:10.1098/rspa.2012.0317 |
Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на эту карточку |
https://repository.kpfu.ru/?p_id=36386 |
Файлы ресурса | |
|
Полная запись метаданных |
Поле DC |
Значение |
Язык |
dc.contributor.author |
Обносов Юрий Викторович |
ru_RU |
dc.date.accessioned |
2012-01-01T00:00:00Z |
ru_RU |
dc.date.available |
2012-01-01T00:00:00Z |
ru_RU |
dc.date.issued |
2012 |
ru_RU |
dc.identifier.citation |
Kacimov A.R., Obnosov Yu.V. Accumulation of a light nonaqueous phase liquid on a flat barrier baffling a descending groundwater flow. Proc. Royal Society London, A, 2012,468(2147), pp.3667-3684, DOI:10.1098/rspa.2012.0317 |
ru_RU |
dc.identifier.uri |
https://repository.kpfu.ru/?p_id=36386 |
ru_RU |
dc.description.abstract |
P ROY SOC A-MATH PHY |
ru_RU |
dc.description.abstract |
The pioneering Zhukovskii (1891) solution for a steady 2D flow of an ideal heavy fluid with a nonlinear free boundary condition is extended to a Darcian flow of groundwater encumbered by an impermeable barrier. The stoss or/and lee sides of the barrier are covered by a macrovolume of a liquid contaminant. Explicit parametric equations of the sharp interface are obtained by inversion of the hodograph domain. Zhukovskii?s gas-finger shape is shown to be a particular case of our new class of free surfaces. For a cap of a light liquid, partially covering the roof, from the given cross-sectional area of the cap the affixes of the conformal mapping are found as a solution of a system of two nonlinear equations. The horizontal width and vertical height of the cap are determined. If the dimensionless incident velocity is higher than the density contrast then the interface (cap boundary) cusps at its apex. For a relatively small velocity the interface spreads to the vertexes of the barrier, t |
ru_RU |
dc.language.iso |
ru |
ru_RU |
dc.subject |
Analytic functions |
ru_RU |
dc.subject |
free boundary problems |
ru_RU |
dc.subject |
Lapalce's equation |
ru_RU |
dc.subject |
seepage |
ru_RU |
dc.subject |
refraction |
ru_RU |
dc.subject |
hydraulic gradient |
ru_RU |
dc.subject |
suffosion |
ru_RU |
dc.title |
Accumulation of a light nonaqueous phase liquid on a flat barrier baffling a descending groundwater flow |
ru_RU |
dc.type |
Статьи в зарубежных журналах и сборниках |
ru_RU |
|