Форма представления | Статьи в зарубежных журналах и сборниках |
Год публикации | 2013 |
Язык | русский |
|
Обносов Юрий Викторович, автор
|
Библиографическое описание на языке оригинала |
Kasimova R.G., Obnosov Yu.V., Baksht F.B., Kacimov A.R. Optimal shape of an anthill dome: Bejan's principle revisited. Ecological Modelling (Elsevier),250(2013),384-390:dx.doi.org/10.1016/j.ecolmodel.2012.11.021 |
Аннотация |
An anthill is modeled as a paraboloid of revolution, whose surface (dome) dissipates heat from the interior of the nest to the ambient air according to the Robin boundary condition, which involves a constant coefficient, given temperature jump and dome's area. The total heat loss of the net is one (integral) component of ants' colony expenditures of energy. Ants, populating the paraboloid, spend also energy individually, by hoisting the load from the ground surface to a certain elevation within the paraboloid and by overcoming a Coulombian resistance, proportional to the trajectory length. In order to count the gross colony expenditures for these mechanical activities all trajectories are integrated over the volume. Ants are assumed to move along the shortest straight lines of their regular sorties between the nest and forest. The three-component energy is mathematically expressed as a closed-form function of only one variable, the paraboloid height-to-width ratio. The minimum of th |
Ключевые слова |
mathematical modeling, constructal design, social insects, ant nest, heat transfer, global minimum |
Название журнала |
ECOL MODEL
|
URL |
http://dx.doi.org/10.1016/j.ecolmodel.2012.11.021 |
Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на эту карточку |
https://repository.kpfu.ru/?p_id=49368 |
Файлы ресурса | |
|
Полная запись метаданных |
Поле DC |
Значение |
Язык |
dc.contributor.author |
Обносов Юрий Викторович |
ru_RU |
dc.date.accessioned |
2013-01-01T00:00:00Z |
ru_RU |
dc.date.available |
2013-01-01T00:00:00Z |
ru_RU |
dc.date.issued |
2013 |
ru_RU |
dc.identifier.citation |
Kasimova R.G., Obnosov Yu.V., Baksht F.B., Kacimov A.R. Optimal shape of an anthill dome: Bejan's principle revisited. Ecological Modelling (Elsevier),250(2013),384-390:dx.doi.org/10.1016/j.ecolmodel.2012.11.021 |
ru_RU |
dc.identifier.uri |
https://repository.kpfu.ru/?p_id=49368 |
ru_RU |
dc.description.abstract |
ECOL MODEL |
ru_RU |
dc.description.abstract |
An anthill is modeled as a paraboloid of revolution, whose surface (dome) dissipates heat from the interior of the nest to the ambient air according to the Robin boundary condition, which involves a constant coefficient, given temperature jump and dome's area. The total heat loss of the net is one (integral) component of ants' colony expenditures of energy. Ants, populating the paraboloid, spend also energy individually, by hoisting the load from the ground surface to a certain elevation within the paraboloid and by overcoming a Coulombian resistance, proportional to the trajectory length. In order to count the gross colony expenditures for these mechanical activities all trajectories are integrated over the volume. Ants are assumed to move along the shortest straight lines of their regular sorties between the nest and forest. The three-component energy is mathematically expressed as a closed-form function of only one variable, the paraboloid height-to-width ratio. The minimum of th |
ru_RU |
dc.language.iso |
ru |
ru_RU |
dc.subject |
mathematical modeling |
ru_RU |
dc.subject |
constructal design |
ru_RU |
dc.subject |
social insects |
ru_RU |
dc.subject |
ant nest |
ru_RU |
dc.subject |
heat transfer |
ru_RU |
dc.subject |
global minimum |
ru_RU |
dc.title |
Optimal shape of an anthill dome: Bejan's principle revisited |
ru_RU |
dc.type |
Статьи в зарубежных журналах и сборниках |
ru_RU |
|