Форма представления | Статьи в зарубежных журналах и сборниках |
Год публикации | 2009 |
|
Лернер Эдуард Юльевич, автор
|
Библиографическое описание на языке оригинала |
Complexity of prime-dimensional sequences over a finite field / E.Yu. Lerner // Functional Analysis and Other Mathematics, 2009, vol. 2, Issues 2-4, pp. 251-255. V. I. Arnold has recently defined the complexity of a sequence of n zeros and ones with the help of the operator of finite differences. In this paper we describe the results obtained for almost most complex sequences of elements of a finite field, whose dimension n is a prime number. We prove that, with n→∞, this property is inherent in almost all sequences, while the values of multiplicative functions possess this property with any n different from the characteristic of the field. We also describe the prime values of the parameter n which make the logarithmic function almost most complex. All these sequences reveal a stronger complexity; its algebraic sense is quite clear. |
Аннотация |
Functional Analysis and Other Mathematics |
Место издания |
Berlin / Heidelberg |
Название журнала |
Functional Analysis and Other Mathematics
|
Издательство |
Springer-Verlag |
URL |
http://link.springer.com/journal/11853/2/2/page/1#page-1 |
Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на эту карточку |
https://repository.kpfu.ru/?p_id=51341 |
Полная запись метаданных |
Поле DC |
Значение |
Язык |
dc.contributor.author |
Лернер Эдуард Юльевич |
ru_RU |
dc.date.accessioned |
2009-01-01T00:00:00Z |
ru_RU |
dc.date.available |
2009-01-01T00:00:00Z |
ru_RU |
dc.date.issued |
2009 |
ru_RU |
dc.identifier.citation |
Complexity of prime-dimensional sequences over a finite field / E.Yu. Lerner // Functional Analysis and Other Mathematics, 2009, vol. 2, Issues 2-4, pp. 251-255. V. I. Arnold has recently defined the complexity of a sequence of n zeros and ones with the help of the operator of finite differences. In this paper we describe the results obtained for almost most complex sequences of elements of a finite field, whose dimension n is a prime number. We prove that, with n→∞, this property is inherent in almost all sequences, while the values of multiplicative functions possess this property with any n different from the characteristic of the field. We also describe the prime values of the parameter n which make the logarithmic function almost most complex. All these sequences reveal a stronger complexity; its algebraic sense is quite clear. |
ru_RU |
dc.identifier.uri |
https://repository.kpfu.ru/?p_id=51341 |
ru_RU |
dc.description.abstract |
Functional Analysis and Other Mathematics |
ru_RU |
dc.description.abstract |
Functional Analysis and Other Mathematics |
ru_RU |
dc.language.iso |
ru |
ru_RU |
dc.publisher |
Springer-Verlag |
ru_RU |
dc.title |
Complexity of prime-dimensional sequences over a finite field / E.Yu. Lerner // Functional Analysis and Other Mathematics, 2009, vol. 2, Issues 2-4, pp. 251-255. V. I. Arnold has recently defined the complexity of a sequence of n zeros and ones with the help of the operator of finite differences. In this paper we describe the results obtained for almost most complex sequences of elements of a finite field, whose dimension n is a prime number. We prove that, with n→∞, this property is inherent in almost all sequences, while the values of multiplicative functions possess this property with any n different from the characteristic of the field. We also describe the prime values of the parameter n which make the logarithmic function almost most complex. All these sequences reveal a stronger complexity; its algebraic sense is quite clear. |
ru_RU |
dc.type |
Статьи в зарубежных журналах и сборниках |
ru_RU |
|