Форма представления | Статьи в зарубежных журналах и сборниках |
Год публикации | 2014 |
Язык | русский |
|
Федотов Евгений Михайлович, автор
|
Библиографическое описание на языке оригинала |
R. Z. Dautov and E. M. Fedotov Abstract Theory of Hybridizable Discontinuous Galerkin Methods for Second Order Quasilinear Elliptic Problems //
ISSN 0965-5425, Computational Mathematics and Mathematical Physics, 2014, Vol. 54, No. 3, pp. 474–490. Pleiades Publishing, Ltd., 2014. Original Russian Text R.Z. Dautov, E.M. Fedotov, 2014, published in Zhurnal Vychislitel"noi Matematiki i Matematicheskoi Fiziki, 2014, Vol. 54, No. 3, pp. 463–480. |
Аннотация |
An abstract theory for discretizations of second order quasilinear elliptic problems based on the mixed hybrid discontinuous Galerkin method. Discrete schemes are formulated in terms of approximations of the solution to the problem, its gradient, flux, and the trace of the solution on the interelement boundaries. Stability and optimal error estimates are obtained under minimal assumptions on the approximating space. It is shown that the schemes admit an efficient numerical implementation. |
Ключевые слова |
discontinuous Galerkin method, hybridizable discontinuous Galerkin schemes, mixed method, quasilinear elliptic equations, error estimate, LBB condition. |
Название журнала |
COMP MATH MATH PHYS+
|
Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на эту карточку |
https://repository.kpfu.ru/?p_id=79866 |
Файлы ресурса | |
|
Полная запись метаданных |
Поле DC |
Значение |
Язык |
dc.contributor.author |
Федотов Евгений Михайлович |
ru_RU |
dc.date.accessioned |
2014-01-01T00:00:00Z |
ru_RU |
dc.date.available |
2014-01-01T00:00:00Z |
ru_RU |
dc.date.issued |
2014 |
ru_RU |
dc.identifier.citation |
R. Z. Dautov and E. M. Fedotov Abstract Theory of Hybridizable Discontinuous Galerkin Methods for Second Order Quasilinear Elliptic Problems //
ISSN 0965-5425, Computational Mathematics and Mathematical Physics, 2014, Vol. 54, No. 3, pp. 474–490. Pleiades Publishing, Ltd., 2014. Original Russian Text R.Z. Dautov, E.M. Fedotov, 2014, published in Zhurnal Vychislitel"noi Matematiki i Matematicheskoi Fiziki, 2014, Vol. 54, No. 3, pp. 463–480. |
ru_RU |
dc.identifier.uri |
https://repository.kpfu.ru/?p_id=79866 |
ru_RU |
dc.description.abstract |
COMP MATH MATH PHYS+ |
ru_RU |
dc.description.abstract |
An abstract theory for discretizations of second order quasilinear elliptic problems based on the mixed hybrid discontinuous Galerkin method. Discrete schemes are formulated in terms of approximations of the solution to the problem, its gradient, flux, and the trace of the solution on the interelement boundaries. Stability and optimal error estimates are obtained under minimal assumptions on the approximating space. It is shown that the schemes admit an efficient numerical implementation. |
ru_RU |
dc.language.iso |
ru |
ru_RU |
dc.subject |
discontinuous Galerkin method |
ru_RU |
dc.subject |
hybridizable discontinuous Galerkin schemes |
ru_RU |
dc.subject |
mixed method |
ru_RU |
dc.subject |
quasilinear elliptic equations |
ru_RU |
dc.subject |
error estimate |
ru_RU |
dc.subject |
LBB condition. |
ru_RU |
dc.title |
Hybridizable Discontinuous Galerkin Methods for Second Order Quasilinear Elliptic Problems |
ru_RU |
dc.type |
Статьи в зарубежных журналах и сборниках |
ru_RU |
|