Форма представления | Статьи в зарубежных журналах и сборниках |
Год публикации | 2014 |
|
Турилова Екатерина Александровна, автор
|
Библиографическое описание на языке оригинала |
Turilova E., Automorphisms of spectral lattices of positive contractions on von Neumann Albebras// Lobachevskii J. of Math. - V.35. - N.4. - P. 354 – 358 |
Аннотация |
We show that any spectral lattice orthoautomorphism of the structure of positive
contractions on a von Neumann algebra, endowed with the spectral order and orthogonality relation,
that preserves scalar operators is a composition of function calculus with natural transformation
of spectral resolutions given by an orthoautomorphism of the projection lattice. In case of von
Neumann algebras without Type I2 direct summand any such a map is a composition of function
calculus with Jordan ∗-automorphism. This result is a parallel to famous Dye?s theorem and
generalizes so far known results on preservers of the spectral order on matrices and operators.
Moreover general spectral lattice automorphism are studied. |
Ключевые слова |
preservers of spectral order, von Neumann algebras, Jordan ∗-automorphisms |
Название журнала |
Lobachevski Journ. of Mathematics
|
Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на эту карточку |
https://repository.kpfu.ru/?p_id=89242 |
Полная запись метаданных |
Поле DC |
Значение |
Язык |
dc.contributor.author |
Турилова Екатерина Александровна |
ru_RU |
dc.date.accessioned |
2014-01-01T00:00:00Z |
ru_RU |
dc.date.available |
2014-01-01T00:00:00Z |
ru_RU |
dc.date.issued |
2014 |
ru_RU |
dc.identifier.citation |
Turilova E., Automorphisms of spectral lattices of positive contractions on von Neumann Albebras// Lobachevskii J. of Math. - V.35. - N.4. - P. 354 – 358 |
ru_RU |
dc.identifier.uri |
https://repository.kpfu.ru/?p_id=89242 |
ru_RU |
dc.description.abstract |
Lobachevski Journ. of Mathematics |
ru_RU |
dc.description.abstract |
We show that any spectral lattice orthoautomorphism of the structure of positive
contractions on a von Neumann algebra, endowed with the spectral order and orthogonality relation,
that preserves scalar operators is a composition of function calculus with natural transformation
of spectral resolutions given by an orthoautomorphism of the projection lattice. In case of von
Neumann algebras without Type I2 direct summand any such a map is a composition of function
calculus with Jordan ∗-automorphism. This result is a parallel to famous Dye?s theorem and
generalizes so far known results on preservers of the spectral order on matrices and operators.
Moreover general spectral lattice automorphism are studied. |
ru_RU |
dc.language.iso |
ru |
ru_RU |
dc.subject |
preservers of spectral order |
ru_RU |
dc.subject |
von Neumann algebras |
ru_RU |
dc.subject |
Jordan ∗-automorphisms |
ru_RU |
dc.title |
Automorphisms of spectral lattices of positive contractions on von Neumann Albebras
|
ru_RU |
dc.type |
Статьи в зарубежных журналах и сборниках |
ru_RU |
|