Форма представления | Статьи в зарубежных журналах и сборниках |
Год публикации | 2014 |
|
Бахтиева Ляля Узбековна, автор
Тазюков Фэрид Хоснутдинович, автор
|
Библиографическое описание на языке оригинала |
L.U. Bakhtieva, F.Kh. Tazyukov. Solution of the Stabillity Problem for a Thin Shell under Impulsive Loading // Lobachevskii Journal of Mathematics - Pleiades Publishing, Ltd., 2014, Vol. 35, No. 4, pp. 384–389. |
Аннотация |
The stability problem for a thin shell under an axial impulsive load is considered. A new
approach to building a mathematical model is presented, which is based on the Ostrogradskii?
Hamilton principle of stationary action. It is shown that the problem reduces to a systemof nonlinear
differential equations that can be solved numerically and by using an approximate calculation
algorithm developed by the authors. A formula determining the dependence between the load
intensity and the initial conditions of the problem is derived. In the above setting, the stability
problem for a circular cylindrical shell is solved. To determine the critical value of the load impulse,
the Lyapunov theory of dynamic stability is used. |
Ключевые слова |
shell, stability, impulse |
Название журнала |
Lobachevskii Journal of Mathematics
|
URL |
http://kpfu.ru/publication? id=89512 |
Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на эту карточку |
https://repository.kpfu.ru/?p_id=89512 |
Файлы ресурса | |
|
Полная запись метаданных |
Поле DC |
Значение |
Язык |
dc.contributor.author |
Бахтиева Ляля Узбековна |
ru_RU |
dc.contributor.author |
Тазюков Фэрид Хоснутдинович |
ru_RU |
dc.date.accessioned |
2014-01-01T00:00:00Z |
ru_RU |
dc.date.available |
2014-01-01T00:00:00Z |
ru_RU |
dc.date.issued |
2014 |
ru_RU |
dc.identifier.citation |
L.U. Bakhtieva, F.Kh. Tazyukov. Solution of the Stabillity Problem for a Thin Shell under Impulsive Loading // Lobachevskii Journal of Mathematics - Pleiades Publishing, Ltd., 2014, Vol. 35, No. 4, pp. 384–389. |
ru_RU |
dc.identifier.uri |
https://repository.kpfu.ru/?p_id=89512 |
ru_RU |
dc.description.abstract |
Lobachevskii Journal of Mathematics |
ru_RU |
dc.description.abstract |
The stability problem for a thin shell under an axial impulsive load is considered. A new
approach to building a mathematical model is presented, which is based on the Ostrogradskii?
Hamilton principle of stationary action. It is shown that the problem reduces to a systemof nonlinear
differential equations that can be solved numerically and by using an approximate calculation
algorithm developed by the authors. A formula determining the dependence between the load
intensity and the initial conditions of the problem is derived. In the above setting, the stability
problem for a circular cylindrical shell is solved. To determine the critical value of the load impulse,
the Lyapunov theory of dynamic stability is used. |
ru_RU |
dc.language.iso |
ru |
ru_RU |
dc.subject |
shell |
ru_RU |
dc.subject |
stability |
ru_RU |
dc.subject |
impulse |
ru_RU |
dc.title |
Solution of the Stabillity Problem for a Thin Shell under Impulsive Loading |
ru_RU |
dc.type |
Статьи в зарубежных журналах и сборниках |
ru_RU |
|