Форма представления | Статьи в российских журналах и сборниках |
Год публикации | 2014 |
Язык | русский |
|
Абызов Адель Наилевич, автор
|
|
Чан Хоай Нгок Нян, автор
|
Библиографическое описание на языке оригинала |
A. N. Abyzov, T. H. N. Nhan, CS-Rickart modules, Lobachevskii Journal of Mathematics, 2014, Vol. 35, No. 4, pp. 316–325. |
Аннотация |
In this paper, we introduce and study the concept of CS-Rickart modules, that is a
module analogue of the concept of ACS rings. A ring R is called a right weakly semihereditary
ring if every its finitly generated right ideal is of the form P . S, where PR is a projective module
and SR is a singular module. We describe the ring R over which Matn(R) is a right ACS ring for
any n Ѓё N. We show that every finitely generated projective right R-module will to be a CS-Rickart
module, is precisely when R is a right weakly semihereditary ring. Also, we prove that if R is a right
weakly semihereditary ring, then every finitely generated submodule of a projective right R-module
has the form P1 . . . . . Pn . S, where every P1, . . . , Pn is a projective module which is isomorphic
to a submodule of RR, and SR is a singular module. As corollaries we obtain some well-known
properties of Rickart modules and semihereditary rings. |
Ключевые слова |
CS-Rickart modules, Rickart modules, ACS rings, semihereditary
rings. |
Название журнала |
Lobachevskii Journal of Math.
|
URL |
http://link.springer.com/journal/volumesAndIssues/12202 |
Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на эту карточку |
https://repository.kpfu.ru/?p_id=89670 |
Полная запись метаданных |
Поле DC |
Значение |
Язык |
dc.contributor.author |
Абызов Адель Наилевич |
ru_RU |
dc.contributor.author |
Чан Хоай Нгок Нян |
ru_RU |
dc.date.accessioned |
2014-01-01T00:00:00Z |
ru_RU |
dc.date.available |
2014-01-01T00:00:00Z |
ru_RU |
dc.date.issued |
2014 |
ru_RU |
dc.identifier.citation |
A. N. Abyzov, T. H. N. Nhan, CS-Rickart modules, Lobachevskii Journal of Mathematics, 2014, Vol. 35, No. 4, pp. 316–325. |
ru_RU |
dc.identifier.uri |
https://repository.kpfu.ru/?p_id=89670 |
ru_RU |
dc.description.abstract |
Lobachevskii Journal of Math. |
ru_RU |
dc.description.abstract |
In this paper, we introduce and study the concept of CS-Rickart modules, that is a
module analogue of the concept of ACS rings. A ring R is called a right weakly semihereditary
ring if every its finitly generated right ideal is of the form P . S, where PR is a projective module
and SR is a singular module. We describe the ring R over which Matn(R) is a right ACS ring for
any n Ѓё N. We show that every finitely generated projective right R-module will to be a CS-Rickart
module, is precisely when R is a right weakly semihereditary ring. Also, we prove that if R is a right
weakly semihereditary ring, then every finitely generated submodule of a projective right R-module
has the form P1 . . . . . Pn . S, where every P1, . . . , Pn is a projective module which is isomorphic
to a submodule of RR, and SR is a singular module. As corollaries we obtain some well-known
properties of Rickart modules and semihereditary rings. |
ru_RU |
dc.language.iso |
ru |
ru_RU |
dc.subject |
CS-Rickart modules |
ru_RU |
dc.subject |
Rickart modules |
ru_RU |
dc.subject |
ACS rings |
ru_RU |
dc.subject |
semihereditary
rings. |
ru_RU |
dc.title |
CS-Rickart modules |
ru_RU |
dc.type |
Статьи в российских журналах и сборниках |
ru_RU |
|