Form of presentation | Articles in international journals and collections |
Year of publication | 2014 |
Язык | английский |
|
Skryabin Sergey Markovich, author
|
Bibliographic description in the original language |
S. Skryabin, Nilpotent elements in the Jacobson-Witt algebra over a finite field, Transformation Groups, 19 (2014) 927-940, DOI 10.1007/s00031-014-9270-0. |
Annotation |
It is shown in this paper that the number of nilpotent elements in the
Jacobson-Witt algebra $W_n$ over a finite field $\F_q$ is equal to the
expected power of $q$. |
Keywords |
Lie algebras, nilpotent elements |
The name of the journal |
Transformation Groups
|
Please use this ID to quote from or refer to the card |
https://repository.kpfu.ru/eng/?p_id=122849&p_lang=2 |
Resource files | |
|
Full metadata record |
Field DC |
Value |
Language |
dc.contributor.author |
Skryabin Sergey Markovich |
ru_RU |
dc.date.accessioned |
2014-01-01T00:00:00Z |
ru_RU |
dc.date.available |
2014-01-01T00:00:00Z |
ru_RU |
dc.date.issued |
2014 |
ru_RU |
dc.identifier.citation |
S. Skryabin, Nilpotent elements in the Jacobson-Witt algebra over a finite field, Transformation Groups, 19 (2014) 927-940, DOI 10.1007/s00031-014-9270-0. |
ru_RU |
dc.identifier.uri |
https://repository.kpfu.ru/eng/?p_id=122849&p_lang=2 |
ru_RU |
dc.description.abstract |
Transformation Groups |
ru_RU |
dc.description.abstract |
It is shown in this paper that the number of nilpotent elements in the
Jacobson-Witt algebra $W_n$ over a finite field $\F_q$ is equal to the
expected power of $q$. |
ru_RU |
dc.language.iso |
ru |
ru_RU |
dc.subject |
Lie algebras |
ru_RU |
dc.subject |
nilpotent elements |
ru_RU |
dc.title |
Nilpotent elements in the Jacobson-Witt algebra over a finite field |
ru_RU |
dc.type |
Articles in international journals and collections |
ru_RU |
|