Kazan (Volga region) Federal University, KFU
KAZAN
FEDERAL UNIVERSITY
 
ON 3-TRANSITIVE TRANSFORMATION GROUPS OF THE LOBACHEVSKII PLANE
Form of presentationArticles in international journals and collections
Year of publication2018
Языканглийский
  • Sosov Evgeniy Nikolaevich, author
  • Bibliographic description in the original language Nigmatullina L. I. On 3-Transitive Transformation Groups of the Lobachevskii Plane / L. I. Nigmatullina, E. N. Sosov // Lobachevskii Journal of Mathematics, 2018, Vol. 39, No. 9, pp. 1221–1224.
    Annotation In this paper, we consider three transformation groups of the Lobachevskii plane that are generated by the group of all motions and one-parameter transformation groups, which preserve an elliptic, a hyperbolic or a parabolic bundle of straight lines of this plane, respectively. It is proved that each of these groups acts 3-transitively on the Lobachevskii plane. The transformation groups and their generalizations can be applied an research of quasi-conformal mappings of the Lobachevskii space, in the special theory of relativity and in the fractal geometry.
    Keywords Transformation group, Lobachevskii plane, Beltrami-Klein model, Poincare ́ model, 3-transitivity.
    The name of the journal Lobachevskii Journal of Mathematics
    URL https://link.springer.com/article/10.1134/S1995080218090433
    Please use this ID to quote from or refer to the card https://repository.kpfu.ru/eng/?p_id=191550&p_lang=2

    Full metadata record