Form of presentation | Articles in Russian journals and collections |
Year of publication | 2018 |
Язык | английский |
|
Khaliullin Samigulla Garifullovich, author
|
Bibliographic description in the original language |
Haliullin S.G. Ultraproducts of von Neumann algebras and ergodicity / S.G. Haliullin // Uchenye zapiski Kazanskogo universiteta. Seriya Fiziko-matematicheskie nauki. - 2018, T. 160 (2), P. 287-292 |
Annotation |
An ultraproduct of any linear spaces with respect of a non-trivial ultrafilter in an index set is generalization of non-standard expansion of the set of real numbers. The non-standard mathematical analysis has the objects and methods of a research which only to some extent depend on laws of the standard mathematical analysis.
In this work non-standard objects - ultraproducts of von Neumann algebras - are studied from the point of view of the standard analysis.
We introduce the concept of ergodic action with respect to a normal state o |
Keywords |
Ultraproducts, actions of group, ergodicity, states on von Neumann algebra |
The name of the journal |
Учен. зап. Казан. ун-та. Сер. физ.-мат.
|
URL |
https://kpfu.ru/2018-tom-160-kniga-2_354394.html |
Please use this ID to quote from or refer to the card |
https://repository.kpfu.ru/eng/?p_id=192117&p_lang=2 |
Full metadata record |
Field DC |
Value |
Language |
dc.contributor.author |
Khaliullin Samigulla Garifullovich |
ru_RU |
dc.date.accessioned |
2018-01-01T00:00:00Z |
ru_RU |
dc.date.available |
2018-01-01T00:00:00Z |
ru_RU |
dc.date.issued |
2018 |
ru_RU |
dc.identifier.citation |
Haliullin S.G. Ultraproducts of von Neumann algebras and ergodicity / S.G. Haliullin // Ученые записки Казанского университета. Серия Физико-математические науки. - 2018, T. 160 (2), P. 287-292 |
ru_RU |
dc.identifier.uri |
https://repository.kpfu.ru/eng/?p_id=192117&p_lang=2 |
ru_RU |
dc.description.abstract |
Учен. зап. Казан. ун-та. Сер. физ.-мат. |
ru_RU |
dc.description.abstract |
An ultraproduct of any linear spaces with respect of a non-trivial ultrafilter in an index set is generalization of non-standard expansion of the set of real numbers. The non-standard mathematical analysis has the objects and methods of a research which only to some extent depend on laws of the standard mathematical analysis.
In this work non-standard objects - ultraproducts of von Neumann algebras - are studied from the point of view of the standard analysis.
We introduce the concept of ergodic action with respect to a normal state o |
ru_RU |
dc.language.iso |
ru |
ru_RU |
dc.subject |
Ultraproducts |
ru_RU |
dc.subject |
actions of group |
ru_RU |
dc.subject |
ergodicity |
ru_RU |
dc.subject |
states on von Neumann algebra |
ru_RU |
dc.title |
Ultraproducts of von Neumann algebras and ergodicity |
ru_RU |
dc.type |
Articles in Russian journals and collections |
ru_RU |
|