Form of presentation | Articles in international journals and collections |
Year of publication | 2023 |
Язык | английский |
|
Davletshin Rustam Rifkhatovich, author
Ziyatdinova Guzel Kamilevna, author
|
|
Gimadutdinova Liliya Timurovna, postgraduate kfu
|
Bibliographic description in the original language |
Gimadutdinova, L. Selective voltammetric sensor for the simultaneous quantification of tartrazine and brilliant blue FCF / L. Gimadutdinova, G. Ziyatdinova, R. Davletshin // Sensors. - 2023. - V. 23. - № 3. - Article 1094. - 19 p. |
Annotation |
Tartrazine and brilliant blue FCF are synthetic dyes used in the food, cosmetic and pharmaceutical industries. The individual and/or simultaneous control of their concentrations is required due to dose-dependent negative health effects. Therefore, the paper presents experimental results related to the development of a sensing platform for the electrochemical detection of tartrazine and brilliant blue FCF based on a glassy carbon electrode (GCE) modified with MnO2 nanorods, using anodic differential pulse voltammetry. Homogeneous and stable suspensions of MnO2 nanorods have been obtained involving cetylpyridinium bromide solution as a cationic surfactant. The MnO2 nanorods-modified electrode showed a 7.9-fold increase in the electroactive surface area and a 72-fold decrease in the electron transfer resistance. The developed sensor allowed the simultaneous quantification of dyes for two linear domains: in the ranges of 0.10?2.5 and 2.5?15 μM for tartrazine and 0.25?2.5 and 2.5?15 μM for brilliant blue FCF with detection limits of 43 and 41 nM, respectively. High selectivity of the sensor response in the presence of typical interference agents (inorganic ions, saccharides, ascorbic and sorbic acids), other food dyes (riboflavin, indigo carmine, and sunset yellow), and vanillin has been achieved. The sensor has been tested by analyzing soft and isotonic sports drinks and the determined concentrations were close to those obtained involving the chromatography technique. |
Keywords |
Voltammetric sensors, chemically modified electrodes, metal oxide nanomaterials, synthetic dyes, beverages, food analysis |
The name of the journal |
Sensors
|
Please use this ID to quote from or refer to the card |
https://repository.kpfu.ru/eng/?p_id=278343&p_lang=2 |
Full metadata record |
Field DC |
Value |
Language |
dc.contributor.author |
Davletshin Rustam Rifkhatovich |
ru_RU |
dc.contributor.author |
Ziyatdinova Guzel Kamilevna |
ru_RU |
dc.contributor.author |
Gimadutdinova Liliya Timurovna |
ru_RU |
dc.date.accessioned |
2023-01-01T00:00:00Z |
ru_RU |
dc.date.available |
2023-01-01T00:00:00Z |
ru_RU |
dc.date.issued |
2023 |
ru_RU |
dc.identifier.citation |
Gimadutdinova, L. Selective voltammetric sensor for the simultaneous quantification of tartrazine and brilliant blue FCF / L. Gimadutdinova, G. Ziyatdinova, R. Davletshin // Sensors. - 2023. - V. 23. - № 3. - Article 1094. - 19 p. |
ru_RU |
dc.identifier.uri |
https://repository.kpfu.ru/eng/?p_id=278343&p_lang=2 |
ru_RU |
dc.description.abstract |
Sensors |
ru_RU |
dc.description.abstract |
Tartrazine and brilliant blue FCF are synthetic dyes used in the food, cosmetic and pharmaceutical industries. The individual and/or simultaneous control of their concentrations is required due to dose-dependent negative health effects. Therefore, the paper presents experimental results related to the development of a sensing platform for the electrochemical detection of tartrazine and brilliant blue FCF based on a glassy carbon electrode (GCE) modified with MnO2 nanorods, using anodic differential pulse voltammetry. Homogeneous and stable suspensions of MnO2 nanorods have been obtained involving cetylpyridinium bromide solution as a cationic surfactant. The MnO2 nanorods-modified electrode showed a 7.9-fold increase in the electroactive surface area and a 72-fold decrease in the electron transfer resistance. The developed sensor allowed the simultaneous quantification of dyes for two linear domains: in the ranges of 0.10?2.5 and 2.5?15 μM for tartrazine and 0.25?2.5 and 2.5?15 μM for brilliant blue FCF with detection limits of 43 and 41 nM, respectively. High selectivity of the sensor response in the presence of typical interference agents (inorganic ions, saccharides, ascorbic and sorbic acids), other food dyes (riboflavin, indigo carmine, and sunset yellow), and vanillin has been achieved. The sensor has been tested by analyzing soft and isotonic sports drinks and the determined concentrations were close to those obtained involving the chromatography technique. |
ru_RU |
dc.language.iso |
ru |
ru_RU |
dc.subject |
Voltammetric sensors |
ru_RU |
dc.subject |
chemically modified electrodes |
ru_RU |
dc.subject |
metal oxide nanomaterials |
ru_RU |
dc.subject |
synthetic dyes |
ru_RU |
dc.subject |
beverages |
ru_RU |
dc.subject |
food analysis |
ru_RU |
dc.title |
Selective Voltammetric Sensor for the Simultaneous Quantification of Tartrazine and Brilliant Blue FCF |
ru_RU |
dc.type |
Articles in international journals and collections |
ru_RU |
|